
UNCLASSIFIED

S'208 r599

ARMED SERVICES TECHNICAL INFORMATION AECY
ARLINGTON HALL SATIO
ARLINGTN 12, VIRGINIA

UNCLASSIFIED



NOTICE: When goverw.-nt nrnV ..... .h qvtdQ% i-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied. the Eaid drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



2966599
THE JOHNS H60I~KNt U NIVERSITY

Oepcoment of Machoan'ts
&ialtmoe, Maryland

THE USE, OF
~uME GOVERNING1 EQUATIONS

q ~ IN DIMENSIO'NAL ANALYSIS
By Robiert Kt. L.ong

Technical Rep~ort No. 13 (oft Series)
Technical Report No. 16 (CW8 Series)

Sponsored by

THE OFFICE OF NAVAL RESEARCI~#

and n
THE UNITED STATES WEATHER UFaf)

The research reported In this dlocurnt wos supported by the Office of Naval Re.-eorch
under Project NR 082-104/9-18-61, Contract N-onr-248(31), and by the U. S. Weather
Bureau under Contract CWB-10204.



THE JOHNS HOPKINS UNIVERSITY

Department of, Mechaicis

Baltimore, Maryland
Janutary, 1963

THE' USE' OF,
THE GOVERNING EQUATIONS

IDIMENSIONAL ANALYSIS
By Robert R.L Long

'Tecna o l~ eo .1 (ONW Series)

Technical Report No. 16 (CWB Series)

Sponsored by

THE OFFICE OF NAVAL RESEARCH

and

THE 'UNITED STATES WEATHER BUREAUl

The research reported':n this document was supported by the, Office of Naval Research
under Project NRZ 082-104/94-1:61, Contract, Nonr-248(31), and; by the! U. S. WeGather
Bureau uindler Contract CWBA.0204.



THE USE OF TH, GOVERNING EQUATIONS,

IN DIANSIONAL ANALYSIS

Abstract

This, paper develops the idea that the ,most effective use of dimen-

sional analysis in fluid mechanics, is to combine it with the known

,mathematical form of the governing, equations. It is shownv that additiotial

informtion can frequently be obtained-in th way, especially when physi-

cal approxiWgns can be reasonably made.

a



T USE OF THE GOVERKING EQUATIONS

IN DIMENSIONAL ANALYSIS

1. Introduction

,One of the nice things, about the science of fluid mec-hanics is that

we have a very good idea of the, mathematical form of the. equations that

,govern our problems even in very complicated cases, for example, problems

of heat convection. The task of solving these equations is a severe one,

of course, and as a result we do A's other scientists ik other fields and

resort to, approximation and experiment. But whichever we do, we find

'that a reasoning process, called dimensional AnalysIs, is useful not only

to guide us -in ou~r tasks, but, frequently, to give us dire&ctly answers to,

some of the questidns, that face us. For example, it is convenient for

expe rimefital purposes to, know that the drag on a body in a stream of

fid of speed u has the form

1F pu 'f (Re)

where p is the density and Re is the Reynolds number. It is also in-

formative to have this product of dimensional reasoning, For ex.ample,.

it tells us that in two different fluids of the same kinematic viscoSity,

the drag is proportional to, the density,

But the theme of this paper is not that dimensional analysis is

convenient and informative both for the experimenter and the theoretician,

although this is both true and important. Rather,, the theme is that when

we know the mathematical form of our governing equationso, we should ex-

ploit this fa4ct not only by searching for solutions to these equations,
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but also by incorporating a'a much as possibIe of this knowledge of our

equatons into, the rea soning proes of dimensional analysis.

2. -Generalized dimensional analysis,

I illustr ae these remarks by the problem from elementary mechanics

of finding the range of a, projectile (IFrgi 1).

y

Vx

Fig. I
The problem, is ompletely defined by the set of equatIons and conditions.

-0alex (0) 0
d13  y(O) =0

d' y  at y0,0 x=R (a)

,(0) v
Obviously the range R depends only on u, v) gj, and, using the physi-

cal dimensions of these 4 quantities, the i-theorem (Bridgman, .1931)

yields

R= f (--1 o2)4i V
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'On the other hand, let us allow all the quantities that enter the system

(1) to have arbitrary dimensgions.. For example, let the dimension of x be

A, -the dimension of y be B,, etc. Symboliceally we writ, e,,

[X]A. [, ]t ]AvC]E, [R] =G

i ~[y]:" , [u]D'., [ g ]-
Now require that all equationrs in (1) be dimensionally homogeneous, for

example - [RI, etc. The resulting relationships among A, B, etc.,

lead to rri B r.1
LKJ 9A t it,C. t v

,Hence the four quantities R, u, v, & have, three dimensions, A, B, C ,i-

stead of the two physicaI dimenlsions L and T, and the n-therem yields

Rg
-K (3)

U V

where K is a nondimensional constant. Equation (3) is much more informa-

tive, of course, than equation (2). In fact (3) shows that the function

F, which is arbitrary in equation (2), must have the form,

f K V ()M U:

This example illustrates the power of generalized dimensional analy-
,

sis. The equations of Newton were set up with an arbitrary choice of
units of mass, length and time. These can always be altered at will

Further generalization is possible (Long, 19;63; Birkhoff, 1950).,
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without ehanging ,the form of the equationas, and the technique of ordi-

,nary diffmens-ional analysis in iechanicS are simply reflections of this:

fact. But as we see in the above example,) we do ourselves an injustice

if we ignore' other information about the mathematical nature 'of our lawos,.

3. Physical approximations and generalized dimensional analysis

Very frequently a genera lized d lmensional analysis such as that

perfor-med above in the example of the projeetilp)j is no more informative

than the ordinary anilysis witth its fundamental units of mass, length

and Ytme. Yet it also, happens frequently that the -ombination of general-,
ized dimensional analysis with the physic, proee"ss o f approxi tion is

more in otmative. suppose, for example, we are interested in the steady

flow of ant incompressible, viscous fluid over a half-inffinite plate s

Fig. 2

shown in Figure 2. With the choice of axes as shown, the =problem is

probably determined by the folIlowing set of equations and conditions:
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u v + vv _, P (6!)
uvx + v y Y: !i,_ iP,+ (v Yy ):,)

p xx

ux + v=y =0 (7),

At x>O, y=O, u=V=G, AS y--O, u--U 8)

Equation (7) shows that we may introdu ce a streamfunction such that

'u ," y I  
(9) r

The equations in (9) can be used to replace equation (7).

Obviously

f x y v ,U(10)

and ordinary dimensional analysis shows that t -akes the form

-_y-; = f y .. , (11)

Furthermore., we may perform a, generalized dimensional analysis of the

system of equations (5), (6), (8) and (9) as in Sect ion 2, and we find

that we are led precisely to equation (11) again,. But suppose that we

allow ourselves to use the, physical arguments of Prandtl (Goldstein 1938-)



that when the viscosity is very ;small the influence of the plate is

limited to a very thin Iayer in the immediate vicinity of the plate. It

is then evident that change"s in velocity in directions normal to the plate

are very muc-h greater than changes in, the direction, of the plate. To, use

thias reasonable conjieture , we first cross-d ffe~entiate equations (5)

and (6) tO elimiiate the pressure terms and we then iitroduce the stream-

function. The governing equations and conditions are now

-(12

* (xx,,,€ x + 2 X~,y yyy )

At X 0O YO 0 *, Y=, ,As y - , Y --- O (3

Now, with the asumption,

the govetning equations and conditions take the form

"k qY Y x ,'k x y qI'+ = v * Yyy (15),

At-x >', y 0, *xr 4y=O As k ('16)'

We now perform a generalized dimensional analysis of this! system, by

assigning arbitrary dimensions to alli quantities, requirimng only that

all terms in 'all equations have the same dimensions. Thus, let

.9^
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; t A E

[x]oB [,u] F

tentatively. Then, (15.) and (16)Y requ- ire

A2 EfA A
BC5  4 C

Therefore,

;Ifr A [Ur AC

We now have three fundamental units, A, B, C, instead of two,, L and T,

and if we now, apply the i-theorem to (10) we get

instead of the less informative (11), With the new independent variable,

the partial differential equation (15) reduces to an ordinary differential

equation in the single, independent variable . The problem can then

be solved numerically.
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4. Model of air, flow over- a, mounta in
Loh .f -e distain tote.oe

To illustrate the application of the above discussions to the model-

ing problemt, we, consider the problem of modeling air flow over a mountain

barrier. Using arguments (Long, 1959) which do not concern us here, we

may show that for certain purposes a reasonably accurate governing differ-

ential equation is

a Y1 + o (20)

wher e yo is the height far upstream (where the disturbance vanishes) of

the streamine through the point (x, y), and V' is a con-stant involving

gavity, density stratifIcat'ion, and upstream velocity. It is a1 oknown

that the motion is determined by the kinematic conditions at the "top"

and bottom of the atmosphere and by the upstream conditions. Suppose,

for simplicity, we take the model to be flow between two parallel, hori-

zontal surfaces separated by a distance h, and over a rectangular obstacle

of width b, height a at the bottom. Then we have

yo=h At y=h
yo =0 ,At y=O x<

Yo =0  At y=O, X
2

o 0 At YO , ~(1

The, condition that the disturbance vanish upstream is

Yor- y As x-- O (22)
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Equa tions (20),'G (2) and e(22) constitute, a completely stated mathe-

matical problem. If, however, it is too difficult to, be solved, we may

very well resort -to experImentation, (iie., modeling),. Since there is

only one dimension, length, in this problem.- ordinary dimensional analy-

sis yields

and we find that we must have equal values of a/h, b/h, 4 hr2 if we are

to have similar phenomena in any two experiments, or in model and proto-

type.

if we perform a generaliz6el dimensional analysis of the problem,

we find that we get the sa1me result as in Eq. (23') ; but suppose ,condi-

tions are such that the variations in the flow patterfn are very gradual

in the horizontal di ecation , compared to the vertical direction, i e,

suppose
02 02

,x 6: y 2

Then we have conditions (21) and (22) but the, governing differential

equation is

2 +0

A generalized dimensional analysis now yields

and we find that we have similar phenomena by demanding equality of



only two parameters, a/h and - ', stead of three. The experimental

advantages, are Very great of course, since much lvess experitwentation, is

now necessary to explore the full range of 'longwave" patterns.


